导航
当前位置: 首页 > 数控教程 >

数控微雕编程教程,数控微雕编程教程视频

2022-01-18 作者 :旋风数控网 围观 : 0次

大家好,今天小编关注到一个比较有意思的话题,就是关于数控微雕编程教程的问题,于是小编就整理了1个相关介绍数控微雕编程教程的解答,让我们一起看看吧。

有的国家大功率激光技术全球领先,应最早研发光刻机,为什么光刻机却造不好?

光刻机的三大部件:顶级的光源(激光系统)、高精度的镜头(物镜系统)、精密仪器制造技术(工作台)。一看就是小日本的活:它三项中独占光学镜头和精密制造,买个激光技术就齐活了!所以,小日本在三个高端光刻机企业中占有二家,尼康和佳能,原来的神是尼康!但荷兰阿斯美买下顶级激光企业、拉上蔡司、再拉上台积电三星等,反手又把小日本干掉了[捂脸][大笑][呲牙]

数控微雕编程教程,数控微雕编程教程视频

中国的激光在世界上也许属于中端或中高端水平。光学镜头属于低端及中端水平,你们谁用过国产单反相机镜头,也许就一二个人,光一,可能没什么人听说!精密制造及数控技术倒是妥妥的中低端水平!

所以,中国国产光刻机是90nm,低端水平。前几天有报导,光源及双工作台都准备验收,应该可以突破45nm向22、甚至16nm冲击!

中国只有激光技术世界第一,镜头超过德国与日本,机床也超过德国与日本,中国就能生产出世界第一的光刻机!现在不行,因为上述都对中国禁运!

感谢您的阅读!

【从我国激光技术全球领先,看我国光刻机发展缓慢原因】

我们应该知道中国激光技术在全球领先,甚至排在第一位。1964年,钱学森院士提议取名为“激光”,从1961年中国第一台激光器到世界上第一所激光技术的专业研究所——中国科学院上海光学精密机械研究所的成立,而且在ICF激光驱动器、高功率化学激光器、半导体泵浦的固体激光器、超短超强激光器等等各方面都有进步,可以说我国的激光事业一直在不断进步。

可是激光≠光刻机技术

我们知道光刻机技术所需要的是——

  • 需要最精密的技术。包括德国机械工艺、蔡司镜头和美国公司提供的光源。
  • 涉及多个学科,包含了系统集成、精密光学、精密运动、精密物料传输、高精度微环境控制等多项先进技术。

  • 光刻工艺的具体步骤繁琐,需要通过硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀等工序,不是简单的激光就能解决的。
  • “拉同伙”,实际上ASML能够成功,是因为将三星、台积电、英特尔等等共同拉入ASML 公司。

为了解决激光,ASML 收购了全球领先的准分子激光器供应商 Cymer,为了解决光刻系统,以 10 亿欧元现金入股光学系统供应商卡尔蔡司。

可以说,ASML的成功不是一蹴而就的,激光≠光刻机。

我们的制约因素,不仅仅技术

其实,影响我们的不仅仅是技术,还有技术壁垒。从《瓦森纳协议》中的影响,让我们不得不受限于技术的“限制”。很多时候不是我们不想发展,而是很多技术它是不能够进来的,在这种情况下,我们的光刻机的发展受到了非常大的限制。

在技术赶不上,又被封锁的情况下,我们确实会在光刻机方面有所欠缺。当然,我们也期盼能够在各种技术的合力下,摆脱限制,得到发展,走出一条打破光刻机技术之路。

光刻机(Mask Aligner) 又名:掩模对准曝光机,曝光系统,光刻系统等。常用的光刻机是掩膜对准光刻,所以叫 Mask Alignment System.

一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀等工序。

Photolithography(光刻) 意思是用光来制作一个图形(工艺);

在硅片表面匀胶,然后将掩模版上的图形转移光刻胶上的过程将器件或电路结构临时“复制”到硅片上的过程。

曝光机是生产大规模集成电路的核心设备,制造和维护需要高度的光学和电子工业基础,世界上只有少数厂家掌握。

高端的投影式光刻机可分为步进投影和扫描投影光刻机两种,分辨率通常七纳米至几微米之间,高端光刻机号称世界上最精密的仪器,世界上已有1.2亿美金一台的光刻机。高端光刻机堪称现代光学工业之花,其制造难度之大,全世界只有少数几家公司能够制造。国外品牌主要以荷兰ASML(镜头来自德国),日本Nikon(intel曾经购买过Nikon的高端光刻机)和日本Canon三大品牌为主。

位于我国上海的SMEE已研制出具有自主知识产权的投影式中端光刻机,形成产品系列初步实现海内外销售。

正在进行其他各系列产品的研发制作工作。

生产线和研发用的低端光刻机为接近、接触式光刻机,分辨率通常在数微米以上。主要有德国SUSS、美国MYCRO NXQ4006、以及中国品牌。

制造高精度的对准系统需要具有近乎完美的精密机械工艺,这也是国产光刻机望尘莫及的技术难点之一。

所以说中国的大功率激光技术即使是全球领先也不代表制作光刻机能力也达到世界领先水平。

但是经过我国科学家的努力,我国的光刻机水平也在不断上升中。

超分辨光刻机

2018年11月29日,国家重大科研装备研制项目“超分辨光刻装备研制”通过验收。该光刻机由中国科学院光电技术研究所研制,光刻分辨力达到22纳米,结合双重曝光技术后,未来还可用于制造10纳米级别的芯片。

虽说世界最先进光刻机分辨率已经达到了3纳米级别,但是我坚信中国通过技术积累一定会逐步追赶上的。


题主认为大功率激光技术全球领先的国家就应该能够具备研发高端光刻机的能力。这种想法类似于让一个能够制造出最锋利的宝剑或大刀的工匠去打造一个用于微雕的雕刻刀一样。他们所在领域的长处对于另一个领域来说没有多少价值,甚至是短处。

高端光刻机说白了就是芯片业的微雕,需要在像指甲盖那么大的芯片上雕刻出几十亿、上百亿的晶体管。必须有非常精密的光源、透镜,有非常精密的机械系统。如果激光雕刻刀动一下的距离都比几十个晶体管的尺寸还要大的话,那是不可能造出高端芯片的。

对于高功率激光装置,它的长处是功率大,更适合做出更先进的激光武器或者激光切割设备,它的研究重点是如果提高激光的功率。但是做芯片所需要的并不是功率大无边,而是激光的精准切割,过大功率的激光不要说做不成高端芯片,还可能把芯片烧糊。所以两者研究的努力方向完全是两码事。

中国近几十年来在各领域的技术都在突飞猛进的发展,很多的技术都是从无到有,反而弯道超车走在了世界的前列,但是在芯片制造上却与国际先进水平差距较大,原因在于芯片制造是一个非常复杂的过程,涉及到工业的各个方面各个领域,具有非常复杂的工序和严格精密的要求。单单一个机械系统,如此微小的尺寸,需要极高的精密度,这对于材料的性能,加工的精度,机构的稳定性等各个方面都有极其严格的要求,是远远超出了一般的机械设备的要求。而激光方面需要进行精密对焦,精准切割,要求的能量不是高,而是准确聚焦。如果我们国家的高精度光刻机能够制造成功,那么在很多的工业领域都将产生领先世界的技术,很多领域都将跻身于世界领先地位。

尽管如此国家的芯片制造水平也在快速提高,上海微电子已经造出了28纳米的光刻机。相信全国上下高度重视举全国之力进行攻关,在不久的将来,尖端芯片制造技术也会被中国所掌握。以往很多的事实已经证明了这一点,越是被国外封锁的中国越能够成功。

(图片来源于网络)

到此,以上就是小编对于数控微雕编程教程的问题就介绍到这了,希望介绍关于数控微雕编程教程的1点解答对大家有用。

相关资讯